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Abstract: Sparse coding is a prevalent method for image inpainting and feature extraction, which can repair corrupted images
or improve data processing efficiency,  and has numerous applications in computer vision and signal processing.  Recently,  sev-
eral  memristor-based  in-memory  computing  systems  have  been  proposed  to  enhance  the  efficiency  of  sparse  coding  remark-
ably. However, the variations and low precision of the devices will  deteriorate the dictionary, causing inevitable degradation in
the  accuracy  and  reliability  of  the  application.  In  this  work,  a  digital-analog  hybrid  memristive  sparse  coding  system  is  pro-
posed utilizing a multilevel Pt/Al2O3/AlOx/W memristor, which employs the forward stagewise regression algorithm: The approxi-
mate cosine distance calculation is conducted in the analog part to speed up the computation, followed by high-precision coeffi-
cient  updates  performed  in  the  digital  portion.  We  determine  that  four  states  of  the  aforementioned  memristor  are  sufficient
for  the  processing  of  natural  images.  Furthermore,  through  dynamic  adjustment  of  the  mapping  ratio,  the  precision  require-
ment  for  the  digit-to-analog  converters  can  be  reduced  to  4  bits.  Compared  to  the  previous  system,  our  system  achieves
higher  image  reconstruction  quality  of  the  38  dB  peak-signal-to-noise  ratio.  Moreover,  in  the  context  of  image  inpainting,
images containing 50% missing pixels can be restored with a reconstruction error of 0.0424 root-mean-squared error.
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1.  Introduction

Sparse coding, a method that decomposes a signal into a
few  elements  of  a  dictionary,  can  uncover  semantic  informa-
tion  about  images[1] and  has  been  applied  in  image  process-
ing tasks such as image inpainting[2] and feature extraction[3−5].
Image  inpainting  can  fill  in  missing  parts  of  an  image  and  is
commonly  used  to  repair  aged  photos  and  damaged  image
files.  Feature  extraction  can  reduce  the  dimensionality  of  the
signal, obtain essential features, and improve the efficiency of
data  processing.  The  forward  stagewise  regression  (FSR)  is
one  of  the  promising  algorithms  to  solve  the  sparse  coding
problem  and  provides  competitive  results  with  the  com-
monly  used  lasso  algorithm[6−8].  However,  FSR  usually
involves  massive  dot  product  operations  to  compute  the
cosine  distance,  which  severely  limits  the  efficiency  of  the
FSR  algorithm.  Nevertheless,  in  2015,  RJ.  Tibshirani  proposed
that  FSR  will  outperform  the  lasso  in  efficiency  when  imple-
mented  in  a  highly  parallel  computing  paradigm[7].  Then,  for
the first  time,  this  work discusses the adoption of  memristive
systems  to  accelerate  FSR  and  perform  sparse  coding.  The
memristive in-memory computing (IMC) paradigm is an appeal-
ing parallel computing approach to perform dot product oper-
ations  with O(1)  time  complexity[9−12].  And  the  IMC  has  been

widely  explored  to  accelerate  the  processing  of  applications
like  the  neural  network[13],  signal  process[14],  and  regres-
sion[15].  Recently,  sparse  coding  has  also  been  implemented
on  the  memristor  arrays  with  encouraging  performance
improvement  compared  with  conventional  CMOS-based  sys-
tems[16−19].

However, these memristive sparse coding systems are cho-
sen  to  be  as  efficient  as  possible,  regardless  of  the  degrada-
tion  of  the  dictionary  and  the  corresponding  detrimental
effects  on  image  reconstruction  and  feature  extraction.  In
their  system,  a  locally  competitive  algorithm  is  chosen  for
implementation.  Then,  to  reduce  the  time  complexity  of  the
algorithm,  both  the  forward  and  backward  iterative  opera-
tions  of  the  algorithm  are  accelerated  by  analog  operations.
Next,  the  encoding  results  will  be  solely  based  on  the  dictio-
nary held on the memristor array. However,  the accuracy and
reliability of the dictionary are not guaranteed. When the dic-
tionary  is  stored  on  the  memristor  array,  it  deteriorates  into
various  dictionaries  at  different  terminals  due  to  the  accu-
racy and variability  of  the memristor[16].  After  that,  the image
cannot  be  reconstructed  by  a  deterministic  dictionary.  Ulti-
mately,  this  inevitably  harms  image  reconstruction  and
affects  the  associated  image  feature  extraction[18].  To  solve
this problem, some computations need to be performed by a
digital  system to control  the accuracy of  the algorithm. How-
ever,  the time complexity of  the forward and backward itera-
tion  steps  of  the  local  competition  algorithm  is  similar,  and
speeding up only one step does not reduce the time complex-
ity  of  the  entire  algorithm.  Therefore,  to  ensure  accuracy
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while  speeding  up  the  execution  of  sparse  coding,  memris-
tive  systems  should  consider  digital-analog  hybrid  opera-
tions and alternative algorithm.

In this work,  to ensure the quality of  sparse coding while
accelerating  it,  we  propose  a  digital-analog  hybrid  memris-
tive  sparse  coding  system  (Fig.  1).  In  this  system,  the  sparse
coding is  implemented by forward stagewise regression with
mixed  digital-analog  operations.  During  the  process,  an
approximate  dictionary  is  mapped  to  the  memristor  array  to
speed  up  the  calculation  of  the  cosine  distance  between  the
dictionary elements and the residual vectors, while a full-preci-
sion  dictionary  is  stored  in  the  digital  system  to  precisely
update  the  reconstructed  image.  Thus,  by  implementing  the
calculation of the cosine distance on the memristor array, the
computational  time  complexity  of  FSR  can  be  reduced  from
O(m × n)  to O(m + n).  Besides,  the  reconstruction  is  con-
ducted  based  on  the  dictionary  stored  in  the  digital  system,
which avoids the dictionary being deteriorated by the nonide-
alities  of  the  devices.  Additionally,  to  reduce  the  precision
required on the digital-to-analog converters (DACs), a dynami-
cally  adjusted  data  mapping  method  is  proposed.  Finally,  in
the  image  inpainting  task,  which  is  an  important  application
of  sparse  coding,  the  proposed  method  can  provide  accu-
rate reconstruction on a natural image with 50% lost pixels. 

2.  Memristor-based FSR

The  procedure  of  sparse  coding  involves  dictionary  con-
struction  and  sparse  representation.  The  constructed  dictio-
nary can be either the predefined dictionary or the learned dic-
tionary. The FSR algorithm is utilized for achieving sparse repre-
sentation. In this section, we illustrate the principle of acceler-
ating the FSR algorithm by memristive IMC. Initially, we intro-
duce  the  multilevel  Pt/Al2O3/AlOx/W  memristor,  followed  by
the  algorithm  of  the  FSR.  The  evaluation  of  the  memristor-
based FSR is predicated on the performance of the aforemen-
tioned  multilevel  memristors.  We  then  propose  data  map-

ping  methods  and  finally  demonstrate  the  digital-analog
hybrid system. 

2.1.  Multilevel Pt/Al2O3/AlOx/W memristor

We  fabricated  a  Pt/Al2O3/AlOx/W  stacked  memristor.
After  depositing  a  Ti  adhesion  layer  on  the  Si/SiO2 substrate,
we  deposited  a  100-nm  Pt  bottom  electrode  by  direct  cur-
rent (dc) magnetron sputtering. Then, through the process of
atomic  layer  deposition,  a  3-nm  Al2O3 layer  was  formed,  fol-
lowed by a 5-nm AlOx layer which was deposited via radio fre-
quency magnetron sputtering. Finally, the 100-nm W top elec-
trode  was  grown  by  dc  magnetron  sputtering  and  patterned
by ultraviolet lithography with a size of 50 × 50 μm2. A sketch
of  the  device  structure  is  given  in Fig.  2(a). Fig.  2(b)  shows
the  scanning  electron  microscope  (SEM)  image  of  the  devi-
ces.  As  shown in Fig.  2(c),  based on the  Al  2p and O 1s X-ray
photoelectron spectroscopy (XPS) images in Al2O3 and AlOx lay-
ers,  it  can  be  observed  that  the  O  1s peak  in  the  AlOx layer
exhibits  a  higher  shift  in  binding  energy  at  531.10  eV  com-
pared  to  the  Al2O3 layer,  which  indicates  the  higher  oxygen
vacancy  concentration  in  the  AlOx layer.  Homogeneous  bila-
yer  structure  with  oxygen  vacancy  concentration  gradients
results  in  a  stable  resistive  switching  behavior  of  the  device.
Fig.  2(d)  exhibits  the  100  consecutive  dc I−V curves  of  the
Pt/Al2O3/AlOx/W  memristor.  High-resistance-state  (HRS)  and
low-resistance-state  (LRS)  distributions  of  10  devices  are
highly  consistent,  as  shown  in Fig.  2(e).  Compared  to  analo-
gous reported devices, our device has achieved multi-conduc-
tance  states  modulation  appropriate  for  sparse  encoding  by
using  the  write-verify  operation  method[20, 21].  A  case  of  tun-
ing  the  device  to  a  target  conductance  state  of  60 μS  by  the
write-verify method is shown in Fig. 2(f). The tiny step voltage
(±20 mV) adopted in the write-verify scheme guarantees high
accuracy  of  conductance  modulation. Fig.  2(g)  displays  the
modulation results of the eight high conductance states (HCSs)
of the devices, while maintaining variations below 3%. The read
distribution of eight target conductance states is illustrated in

 

Fig. 1. (Color online) Schematic diagram of the digital-analog hybrid memristive sparse coding system. Input images can be divided into small
patches and then represented by a few dictionary elements.  The memristor array is  used to store the approximate dictionary to calculate the
cosine distance between the dictionary elements and the residual vector (image reconstruction error). The digital system then determines the
most relevant dictionary element based on the result  of  the analog calculation,  and that element at full  precision becomes part of  the recon-
structed image.
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Fig. 2(h), which is desirable for the sparse coding model. Fig. 2(i)
demonstrates over 3000 s retention results of eight HCSs prov-
ing the reliability of the Pt/Al2O3/AlOx/W memristor. 

2.2.  Algorithm of forward stagewise regression

FSR serves as a kind of L1 norm regression is widely used
in  processing  sparse  models[6−8].  In  the  regression,  the  n-
dimension output vector y can be represented by the n-dimen-
sion variable vectors x1, x2,···, xm as in the following: 

y = βx + βx +⋯ + βmxm, (1)

where β stands  for  the  coefficient  estimates  of  variables x1,
x2,···, xm. To model y as a linear combination of x1, x2,···, xm, the
FSR  updates  the  coefficient  estimates β(k) by  calculating  the
cosine distance to find the most relevant variable with the cur-
rent  residual y−ŷ,  and  then  transfer  the  newly  estimated ŷ to
the  next  iteration.  For  the kth iteration,  the  processes  can  be
expressed as follows: 

j = argmax
j=,⋯,m

{∣xTj (y − ŷ) ∣ } , (2)
 

β(k+)j = β(k)j + ε ⋅ sign {xTj (y − ŷ)} , (3)
 

ŷ+ = ε ⋅ sign {xTj (y − ŷ)} ⋅ xj, (4)

where j stands for the index of the most related variable, and
ε is  the  step  size.  Such  iteration  continues  until  the  repeat
time k reaches  the  set  maximum  or  the  fitting  error  ║y−ŷ║2

converges  under  a  certain  level.  After  the  convergence,  the
stagewise  estimate  will  follow  the  desired  sparsity  pro-
perties[22]:  ÂÂÂÂÂβ(k)ÂÂÂÂÂ ⩽ kε and ÂÂÂÂÂβ(k)ÂÂÂÂÂ ⩽ k. (5)

The flow chart  of  the  FSR is  illustrated in Fig.  3(a),  where
the calculation of cosine distance dominates in the whole pro-
cess  of  the  algorithm  with  the  computational  complexity  of
O(m × n).  Therefore,  by  performing  this  step  on  the  memris-
tor  array  in  an O(1)  manner,  the  complexity  of  the  FSR  could
be  reduced  to O(m + n).  At  the  same  time,  the  computa-
tional  accuracy  of  the  algorithm  can  be  controlled  by  the
parameter  iteration  operations  performed  in  the  digital  sys-
tem.  Theoretically,  the  execution  of  the  FSR  can  be  acceler-
ated  by  low-precision  memristive  calculations  while  ensuring
computational accuracy. 

 

Fig. 2. (Color online) (a) A schematic of the device structure. (b) SEM image of the Pt/Al2O3/AlOx/W memristor. (c) XPS image of Al 2p and O 1s in
the AlOx and Al2O3 layers. (d) 100 consecutive dc I−V curves with forming voltage about 4.8 V. (e) HRS and LRS distributions for 10 devices. (f) An
instance of tuning the device conductance to reach a target conductance state of 60 μS with an error rate < 4% is demonstrated. The inset shows
the write-verify method where a step voltage of ± 20 mV is employed. (g) Eight target conductance states are fine-tuned through the write-ver-
ify method, with < 4% variations. (h) Stable read distribution of each eight target conductance states at a dc reading voltage of 0.1 V. (i) Reten-
tion test over 3000 s of the same eight conductance states mentioned in Fig. 2(h).
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2.3.  Data-mapping method
For  the  implementation  of  FSR  on  the  memristor  arrays,

the  variables x1, x2,···, xm and  the  residual  vector y−ŷ are
mapped  as  the  device  conductance  and  the  input  voltages,
respectively.  However,  the  dilemma  of  data  mapping  is  that
the precision of the data is usually above 8 bits, while the num-
ber  of  available  memristor  conductance states  and the preci-
sion  of  the  DAC  are  usually  limited.  To  reduce  the  precision
requirements  of  the  in-memory  sparse  coding  for  conduc-
tance and voltage, two optimized data-mapping methods are
proposed  for  the  variables  and  residual  vectors,  respectively.
For the variables,  (1)  standardize the data separately for  each
variable  vector  (z-score  standardization)[23],  (2)  all  values  are
mapped according to the designed precision and the trunca-
tion  range,  and  (3)  the  difference  between  the  two  memris-
tors  is  used to represent  the mapped values.  For  the residual
vector, the values of the vector shrink as the regression plane
fits the data better through the iterations. Therefore, it is diffi-
cult to map the residual vectors to voltages continuously and
adequately with a fixed numerical-voltage mapping ratio and
low-precision  DACs.  Accordingly,  we  propose  a  dynamically
adjusted  mapping  method  (Fig.  3(c)):  (1)  calculate  the  aver-
age  absolute  value  of  the  vector  elements,  (2)  take  some
equally  spaced  points  around  0  to  map  all  the  values  in  the
vicinity, where the spacing is dependent on the previously cal-
culated  average  value,  and  (3)  use  the  DACs  to  convert  the
mapped values into voltages. Moreover, to reduce the comput-
ing  burden  of  the  digital  system,  the  average  value  could  be
updated  every  few  iterations,  since  it  does  not  vary  signifi-
cantly.

We  note  that  the  above  mapping  method  may  lead  to
severe  truncation  errors  at  several  data  points,  because  it
does  not  use  the  maximum  value  as  the  upper  limit  of  the
mapping  range.  However,  large  truncation  errors  occur
mainly  for  outliers,  which  are  usually  detrimental  to  regres-

sion  analysis[24].  Additionally,  the  calculation  of  cosine  dis-
tances  requires  only  relative  values  to  find  the  most  relevant
variables,  which  can  tolerate  the  mapping  error  to  a  certain
extent. 

2.4.  Hybrid digital-analog system

Here,  we  illustrate  the  operation  process  of  the  pro-
posed  hybrid  digital-analog  system.  After  the  variables x1,
x2,···, xm are  stored on the memristor  array  in  an approximate
map-ping manner, the system initializes the regression coeffi-
cients β(0) and predicted values ŷ to zero and then starts itera-
tion.  During  the  iteration  process,  first,  the  residual  vector
y−ŷ is converted into a voltage vector according to the afore-
mentioned  method  and  applied  to  the  array.  Then,  the  out-
puts  of  the  circuit  are  sampled  by  analog-digital  converters
(ADCs),  and  the  results  are  the  approximate  cosine  distances
of the residual vector y−ŷ and variables x1, x2,···, xm, which can
be used to find the most relevant variable to the current resid-
ual  vector  (Fig.  3(b)).  Next,  the  regression  coefficient  of  this
variable  is  updated  by  adding  ±ε (the  sign  depends  on  the
cosine  similarity),  and  the  predicted  value ŷ is  updated  with
that variable in the digital  part  with full  precision.  Finally,  the
updated ŷ is  transferred to the next  iteration.  Once the num-
ber  of  iterations  reaches  the  upper  limit  or  the  fitting  error
║y−ŷ║2 reaches  below  the  threshold,  it  outputs  the  regres-
sion  coefficients β(k),  completing  the  variable  selection  and
sparse estimations. In the above procedure, the cosine similar-
ity  is  computed  based  on  Ohm's  law  and  Kirchhoff's  law  in
the  analog  circuit,  and  the  parameter  iteration  operation  is
based  on  full-precision  computation  in  the  digital  system.
While  low-precision  analog  circuits  are  used  to  perform  the
most  costly  computations,  full-precision  digital  operations
ensure the computational accuracy of the algorithm. This sys-
tem  takes  full  advantage  of  digital-analog  hybrid  operation
and reflects the adaptability of the FSR. 

 

Fig. 3. (Color online) (a) Flow chart of the FSR. The sign of ε is dependent on the cosine similarity between the corresponding variable and resid-
ual vector. (b) Calculating the cosine distance between residual vector y−ŷ and variables x1, x2,···, xm by the memristor array. Each line of the array
stores the values of a variable in the dataset and each element of the variable is represented by the conductance difference of two memristors.
(c) Residual vectors mapped to the 4-bit scaling range. During the iteration, the numerical-voltage scaling ratio will be continuously decreased
with the shrinking of the residual vector.
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3.  Memristor-based FSR for sparse coding

In  this  section,  we  demonstrate  the  use  of  memristor-
based  FSR  to  solve  sparse  coding  tasks.  During  the  process,
the  variable  matrix X is  the  dictionary,  the  real  value y is  the
image  patch,  and  the  fitting  goal  is  to  fit  the  image  patch
with the dictionary elements. We will  first introduce the algo-
rithm for  sparse coding and then perform simulations to ver-
ify  that  the  memristor-based  FSR  can  accurately  handle
sparse  coding  tasks.  The  key  step,  calculating  the  cosine  dis-
tance between the residual vector and dictionary elements, is
implemented  in  a  modeled  memristor  array,  where  the  ana-
log properties are simulated on the python platform. Addition-
ally,  considering that both the predefined and learned dictio-
naries  are  widely  used,  we  employ  both  dictionaries  to  per-
form  memristor-based  sparse  coding  and  compared  the
results. 

3.1.  Sparse coding algorithm

Sparse  coding  algorithms  aim  to  find  a  linear  combina-
tion  of  a  small  number  of  dictionary  elements  to  represent
the  input  signal.  It  can  reduce  the  dimensionality  of  high-
dimensional  data,  find  essential  features  of  signals,  and
extract  semantic  information  of  graphs.  As  such,  it  has  a
broad range of applications in computer vision and signal pro-
cessing.  Sparse  coding  usually  contains  two  steps,  namely,
the  construction  of  a  dictionary  and  the  sparse  representa-
tion.  Predefined dictionaries  (DCT,  Gabor)  and learned dictio-
naries are widely used in this field[5]. The predefined dictionar-
ies  can  be  obtained  by  sampling  the  wave[25, 26],  while  the
learned dictionary can be obtained by dictionary learning algo-
rithms  such  as  K-SVD[2].  After  the  dictionary  is  obtained,  the
mathematical  description  of  sparse  representation  can  be
viewed as an L0-norm minimization[16]: 

min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n

∑
i=

⎛⎝yi − m

∑
j=

xijβj
⎞⎠⎫⎪⎪⎪⎬⎪⎪⎪⎭ subject to ∥β∥ ⩽ q, (6)

where y is the image patch, X is the dictionary, β is the coeffi-
cient estimation of the dictionary elements, and q is the num-
ber  of  selected  elements.  However,  since  the  L0-norm  mini-
mization is  an NP-hard problem, the L1-norm minimization is
a  popular  choice  to  replace  it  in  sparse  coding,  as  these  two
methods  have  the  same  effect  when  the  solution  is  sparse
enough[27].  Sparse  representation  algorithms  include  lasso,
orthogonal  matching  pursuit,  forward  stagewise  regression,
local competition algorithm, etc. Consider the excellent perfor-
mance of forward stagewise regression and its adaptability to
digital-analog  hybrid  operations.  The  goal  of  this  work  is  to
use  digital-analog  hybrid  operations  to  accelerate  the  execu-
tion of forward stagewise regression while ensuring computa-
tional accuracy. 

3.2.  Memristor-based sparse coding

Here  we  will  evaluate  the  sparse  representation  perfor-
mance  of  the  memristor-based  FSR  with  the  DCT  dictionary
and  learned  dictionary.  The  over-determined  DCT  dictionary
can be obtained by sampling the cosine wave at different fre-
quencies[25]. The scale of the dictionary is 64 × 256, which con-
tains  256  image  features,  with  each  feature  consisting  of  64
weights. Limited by the finite conductance states of the mem-

ristor,  the  precision  of  the  dictionary  is  reduced  to  4-bit,  and
then  is  mapped  as  the  difference  between  two  memristor
arrays.  The  multiple  conductance  states  in  the  device  model
were  set  to  60,  80,  100,  120,  140,  160,  180,  and  200 μS with
4% (σ/μ)write (write variation) and 4% (σ/μ)read (read variation).
The distribution of the conductance is shown in Figs. 4(a) and
4(b). Then, Figs. 4(c) and 4(d) demonstrate an example of mem-
ristor-based  sparse  coding,  where  the  step  size σ is  set  to
0.025,  and  the  iteration  number  is  100.  During  the  process,
the number of selected dictionary elements increases with iter-
ations  (Fig.  4(e)),  which  is  a  forward  selection  method  that
allows  us  to  obtain  the  most  important  features  at  the  early
stage[28].  Finally,  all  patches  will  be  sparse  coding,  and  the
entire  image  is  reconstructed  as  in Fig.  4(f),  showing  good
image reconstruction quality.

In Figs.  4(g)  and 4(h),  the  sparse  coding  effects  of  the
memristor-based  FSR  and  the  full-precision  FSR  at  different
thresholds  are  compared.  The  DAC  precision  is  set  to  4-bit.
Then,  at  the  expense  of  a  little  sparsity  of  selected  elements,
memristor-based FSR can achieve the same image reconstruc-
tion quality  as  the full-precision one.  Furthermore,  the image
re-construction  quality  is  inversely  proportional  to  the  num-
ber of selected dictionary elements, and the best image recon-
struction quality surpasses that of prior studies[16−19]. This sug-
gests  that  memristor-based  FSR  can  perform  sparse  coding
with  high  efficiency  and  higher  quality,  and  the  DCT  dictio-
nary can be used for memristor-based sparse coding.

The  learned  dictionary  is  obtained  by  a  dictionary  learn-
ing  algorithm  trained  on  natural  images.  Here,  the  64  ×  256
DCT  dictionary  is  selected  as  the  initial  dictionary  and  the  K-
SVD  algorithm[2] is  used  to  learn  a  dictionary  offline  without
considering  the  hardware  nonidealities.  The  training  set  is
shown in Fig.  5(a),  which does not contain the testing image.
Then  the  offline-learned  dictionary  is  obtained  as  shown  in
Figs. 5(b) and 5(c), which has been mapped onto the memris-
tor  devices  the  same  as  that  of  the  DCT  dictionary.  To  com-
pare  the  performance  of  memristor-based  FSR  using  the  two
dictionaries,  the same thresholds are taken to perform sparse
coding  on  the  offline-learned  dictionary.  Then,  compared
with  the  DCT  dictionary,  the  offline-learned  dictionary
achieves a higher upper limit  of  image reconstruction quality
and better sparsity (Figs. 5(d) and 5(e)). This suggests that exist-
ing  learned  dictionaries  can  be  directly  mapped  to  memris-
tor  arrays  to  accelerate  sparse  coding  and  achieve  better
results than when using DCT dictionaries. 

3.3.  Analysis of hardware nonidealities

To analyze the influence of the various hardware nonideali-
ties  on  the  system,  we  further  conduct  simulation  analysis.
The  offline-learned  dictionary  is  selected  for  the  analysis
according to the image reconstruction quality, and the thresh-
old  is  set  as  in  the  condition  when  the  reconstruction  error
(mean square  error)  is  less  than 0.0006 to  balance the  recon-
struction quality  and sparsity.  As  can be  seen in Fig.  6(a),  the
4-bit conductance is sufficient for the sparse coding tasks com-
pared  to  the  higher-precision  ones,  and  3-bit  conductance  is
also  tolerable  only  when  the  number  of  selected  elements
increases  by  6%.  This  means  that  memristors  with  only  four
states (equivalently  3-bit  for  differential  pairs)  can be used to
perform sparse coding for  natural  images,  while  prior  studies
usually required over eight states[16−19].  In Fig.  6(b),  with 4-bit
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precision  DACs,  this  system  can  achieve  similar  reconstruc-
tion  quality  as  that  of  the  full  precision  ones  (Fig.  5(e)).
Higher  precisions  can  further  improve  the  result,  but  such
improvement  is  not  significant  considering  the  heavy  hard-
ware  burden  of  high-precision  DACs.  Then,  under  the  condi-
tion  that  the  voltages  and  conductance  are  both  4-bit  preci-

sion,  after  a  64-bit  MAC  operation,  the  output  results  should
be  sampled  by  14-bit  ADCs  to  maintain  full  precisions.  How-
ever, Fig.  6(c)  shows  that  10-bit  ADCs  are  enough  for  this
task,  because the differences of  the conductance obey a nor-
mal  distribution  and  the  absolute  values  of  the  voltage  vec-
tors  are  usually  low.  Finally,  the  robustness  of  this  system

 

Fig. 4. (Color online) (a) The overdetermined DCT dictionary is mapped to the 128 × 256 memristor array. (b) Examples of the elements of the
DCT dictionary. (c) Scheme of the original image (128 × 128). The image is divided into 8 × 8 patches for processing. (d) One patch in (c) to per-
form sparse coding with consideration of nonideal factors in a real circuit. (e) The dictionary element coefficient update path of (d). (f) Simulated
reconstructed picture of (e), with consideration of nonideal factors in a real circuit. (g, h) In the case of adopting the DCT dictionary, the image
reconstruction quality and sparsity of FSR under different thresholds (L0 is the average number of selected elements) with respect to (g) memris-
tor-based FSR and (h) full-precision FSR.

 

Fig. 5. (Color online) (a) Schemes of the natural pictures used to train the dictionary. (b) The offline-learned dictionary is mapped to 128 × 256
memristor array. (c) Examples of the elements of the learned dictionary. (d, e) In the case of adopting the offline-learned dictionary, the image
reconstruction quality and sparsity of FSR under different thresholds with respect to (d) memristor-based FSR and (e) full-precision FSR.
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under  various  device  variations  is  analyzed.  As  shown  in
Fig.  6(d),  even  with  30%  (σ/μ)write and  30%  (σ/μ)read,  our  sys-
tem still  achieves the same image reconstruction quality with
the ideal result. But in Fig. 6(e), the sparsity drops faster, toler-
ating only 15% (σ/μ)write and 15% (σ/μ)read with the number of
selected elements increased by 15%.
 

3.4.  Image inpainting application

The  purpose  of  image  inpainting  is  to  restore  corrupted
images,  and  it  is  commonly  used  to  repair  aged  photos  or
image  files  that  have  been  corrupted  during  data  transfer.
Sparse  coding  can  capture  semantic  information  from  the
remaining  pixels  of  a  corrupted  image  to  fill  in  the  missing

 

Fig. 6. (Color online) (a) The influence of conductance precision on peak-signal-to-noise ratio (PSNR) and sparsity (L0). (b) The influence of DAC pre-
cision on PSNR and sparsity. (c) The influence of ADC precision on PSNR and sparsity. (d) The robustness analysis of PSNR with device variations.
(e) The robustness analysis of the sparsity with device variations.

 

Fig. 7. (Color online) (a) The image inpainting task is performed using memristor-based sparse coding, where the array input voltage is the resid-
ual vector of remaining pixels. (b) Image restoration effect based on the DCT dictionary and learned dictionary, the middle one is based on the
DCT dictionary and the right one is based on the learned dictionary.
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parts.  With  the  above  hardware  parameter  design  considera-
tions,  to  demonstrate  that  the  memristor-based  FSR  can  be
applied  to  a  realistic  image  processing  task,  we  apply  it  to
complete image inpainting (a basic application of sparse cod-
ing[29]).  Here,  we  randomly  delete  50%  of  the  pixels  in  the
image and then applied memristor-based FSR to restore their
values  with  the  DCT  dictionary  and  the  learned  dictionary,
respectively.  In  the  process,  the  damaged  picture  was  first
split  into 8 × 8 patches.  Then,  in  the loop iteration stage,  the
similarity  between  the  residual  vector y-ŷ and  the  dictionary
elements  are  computed  and  the  coefficient  of  the  most  rele-
vant  dictionary  element  is  updated.  Moreover,  the  image
inpainting task only computes the similarity between the resid-
ual  vectors  of  the  remaining  pixels  and  the  dictionary  ele-
ments  (Fig.  7(a)),  while  sparse  coding  typically  computes  the
similarity between the residual vectors of all pixels and the dic-
tionary  elements.  After  a  certain  number  of  loop  iterations,
the image is reconstructed based on the coefficients of the dic-
tionary  elements  to  obtain  an  image  filled  with  missing  pix-
els. Finally, the learned dictionary achieves better image recon-
struction than the DCT dictionary (Fig. 7(b)), with a reconstruc-
tion error of 0.0424 root-mean-squared error (RMSE). This indi-
cates  that  the  memristor-based  FSR  can  perform  the  task  of
image inpainting. 

4.  Discussion

Finally,  we  now  compare  our  study  with  similar  works
reported  in  the  literature.  Can et  al.  have  developed  a  128  ×
64  memristor  array  for  signal  and  image  processing  tasks[14].
This  in-memory  computing  system  exhibits  a  significantly
higher  energy  efficiency  of  119.7  TOPS/W  compared  to  von
Neumann-based  chip  architectures,  highlighting  the  notable
advantages  of  memristor-based  in-memory  computing  sys-
tems in enhancing the efficiency of the image-processing algo-
rithm.  Sheridan et  al.  experimentally  implemented  a  memris-
tor-based  locally  competitive  algorithm  (LCA)  for  sparse  cod-
ing,  which  theoretically  can  achieve  16  ×  improvement  in
power  consumption  than  the  digit  CMOS  system[16].  Woods
et  al.  provided  an  LCA-like  algorithm  using  a  spiking  frame-
work,  which  resulted  in  a  more  energy-efficient  sparse  cod-
ing  architecture,  improving  an  all-CMOS  ASIC  with  21  ×  the
throughput  while  using  99%  less  energy  per  input[18].  These
systems fully  demonstrate  that  IMC can achieve a  sufficiently
high  energy  efficiency  at  the  data  scale  for  sparse  coding
applications. This work does not outperform them in terms of
energy  efficiency.  But  we  solved  a  common  problem  with
their  memristive  sparse  coding  systems,  the  dictionary  qual-
ity  degrades  on  the  memristor  array,  and  images  cannot  be
reconstructed  with  a  definite  dictionary.  In  their  systems,  the
memristor  array  is  employed  to  store  the  dictionary.  But  the
variations of the memristor, which may be caused by the vari-
ous device characteristics and fabrication procedures, will dete-

riorate one dictionary to various dictionaries in different termi-
nals.  Then  the  above-mentioned  problem  will  arise  and  criti-
cally  harm  the  image  reconstruction,  which  is  considered  to
affect  image  feature  extraction[18].  In  contrast,  in  this  work,
the  memristor  array  is  just  used  to  approximately  calculate
the cosine distance between the dictionary elements and the
residual  vector.  And  the  encoding  results  of  different  termi-
nals are based on a full-precision dictionary in the digital  sys-
tem,  which  is  not  affected  by  the  nonidealities  of  the  de-
vices.  Therefore,  this  memristor-based  system  can  achieve
higher image reconstruction quality than the previous studies
(Table 1). Specifically, the proposed system achieves the high-
est image reconstruction quality among memristive sparse cod-
ing  systems  with  the  same  compression  ratio  (L0/patch  size).
It  is  worth  noting  that  this  is  the  first  time  a  low-precision
memristive sparse coding system has achieved an image recon-
struction quality of 38 dB. 

5.  Conclusion

In this work, we introduced a digital-analog hybrid memris-
tive  sparse  coding  system  (memristor-based  FSR),  which  can
reduce  the  time  complexity  of  the  FSR  from O(m × n)  to
O(m + n) by utilizing memristive IMC. Besides, the image recon-
struction  quality  (PSNR)  of  memristive  sparse  coding  can  be
improved  to  38  dB.  The  hardware  requirements  of  the  sys-
tem  are  low,  which  only  requires  moderate  memristor  con-
ductance  states  (≥ 4),  write  variation  (≤ 15%),  read  variation
(≤ 15%)  and  DACs  (≥ 4  bits).  In  the  image  inpainting  task,
this method has restored the image with 50% lost pixels, and
the  reconstruction  error  after  a  filling  is  0.0424  RMSE.  These
results  show  that  memristor-based  FSR  can  accomplish
sparse  coding  with  high  efficiency  and  high  quality,  and  is
promising  for  applications  such  as  image  recognition,
anomaly detection, etc. 
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